Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37238086

RESUMO

Vairimorpha, a microsporidian parasite (previously classified as Nosema), has been implicated in the decline of wild bumble bee species in North America. Previous studies examining its influence on colony performance have displayed variable results, from extremely detrimental effects to no observable influence, and little is known about the effects it has on individuals during the winter diapause, a bottleneck for survival in many annual pollinators. Here, we examined the effect of Vairimorpha infection, body size, and mass on diapause survival in Bombus griseocollis gynes. We demonstrate that gyne survival length in diapause is negatively affected by symptomatic Vairimorpha infection of the maternal colony but does not correlate with individual pathogen load. Our findings further indicate that increased body mass offers a protective effect against mortality during diapause in infected, but not in healthy, gynes. This suggests that access to adequate nutritional resources prior to diapause might offset the harmful effect of Vairimorpha infection.

2.
J Chem Ecol ; 48(3): 270-282, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35277797

RESUMO

Communication in social insect colonies depends on signals accurately reflecting the identity and physiological state of the individuals. Such information is coded by the products of multiple exocrine glands, and the resulting blends reflect the species, sex, caste, age, task, reproductive status, and health of an individual, and may also contain caste-specific pheromones regulating the behavior and physiology of other individuals. Here we examined the composition of labial gland secretions in females of the bumble bee Bombus impatiens, of different castes, social condition, age, mating status, and ovarian activation. We show that active queens, gynes, and workers each produce caste-specific compounds that may serve different communicative functions. The composition and amounts of wax esters, mostly octyl esters produced by active queens, differed significantly between castes, mating, and social conditions, suggesting a social signaling role. Farnesyl esters were predominant in gynes and peaked at optimal mating age (6-10 days), suggesting their possible roles as sex pheromone components. Reproductive status of females and age across castes was reflected by the ratio between short- and long-chain hydrocarbons, suggesting that these compounds may serve as fertility signals. Our findings overall suggest that the labial gland composition in B. impatiens reflects different facets of female physiology. While further bioassays are required to determine the functions of these compounds, they are likely to have important roles in communication between individuals.


Assuntos
Feromônios , Atrativos Sexuais , Animais , Abelhas , Glândulas Exócrinas , Feminino , Fertilidade , Reprodução/fisiologia
3.
Insects ; 12(8)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34442239

RESUMO

Bumble bees are key pollinators for wild and managed plants and serve as a model system in various research fields, largely due to their commercial availability. Despite their extensive use, laboratory rearing of bumble bees is often challenging, particularly during the solitary phase queens undergo before founding a colony. Using a literature survey, we demonstrate that most studies rely on commercially available species that are provided during the colony's social phase, limiting study on early phases of the life cycle and the ability to control for colony age and relatedness. Laboratory rearing is challenging since the queen solitary phase is less understood compared to the social phase. To overcome this barrier, we examined several aspects related to the queen solitary phase: the effect of age on likelihood of mating, how the timing of CO2 narcosis post-mating (a technique to bypass diapause) affects egg-laying, and whether different social cues affect the success of colony initiation. Our data show an optimum age for mating in both sexuals and decreased egg-laying latency in the presence of workers and pupae. The timing of CO2 narcosis did not significantly affect egg laying in queens. These findings can be incorporated to improve bumble bee rearing for research purposes.

4.
Sci Rep ; 11(1): 16931, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417514

RESUMO

Queen pheromones have long been studied as a major factor regulating reproductive division of labor in social insects. Hitherto, only a handful of queen pheromones were identified and their effects on workers have mostly been studied in isolation from the social context in which they operate. Our study examined the importance of behavioral and social context for the perception of queen semiochemicals by bumble bee workers. Our results indicate that a mature queen's cuticular semiochemicals are capable of inhibiting worker reproduction only when accompanied by the queen's visual presence and the offspring she produces, thus, when presented in realistic context. Queen's chemistry, queen's visual presence and presence of offspring all act to regulate worker reproduction, but none of these elements produces an inhibitory effect on its own. Our findings highlight the necessity to reconsider what constitutes a queen pheromone and suggest a new approach to the study of chemical ecology in social insects.


Assuntos
Abelhas/fisiologia , Hierarquia Social , Feromônios/metabolismo , Animais , Tegumento Comum/fisiologia , Reprodução/fisiologia , Tamanho da Amostra
5.
J Am Chem Soc ; 143(30): 11690-11702, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34283601

RESUMO

Lasso peptides are a family of ribosomally synthesized and post-translationally modified peptides (RiPPs) defined by their threaded structure. Besides the class-defining isopeptide bond, other post-translational modifications (PTMs) that further tailor lasso peptides have been previously reported. Using genome mining tools, we identified a subset of lasso peptide biosynthetic gene clusters (BGCs) that are colocalized with genes encoding protein l-isoaspartyl methyltransferase (PIMT) homologues. PIMTs have an important role in protein repair, restoring isoaspartate residues formed from asparagine deamidation to aspartate. Here we report a new function for PIMT enzymes in the post-translational modification of lasso peptides. The PIMTs associated with lasso peptide BGCs first methylate an l-aspartate side chain found within the ring of the lasso peptide. The methyl ester is then converted into a stable aspartimide moiety, endowing the lasso peptide ring with rigidity relative to its unmodified counterpart. We describe the heterologous expression and structural characterization of two examples of aspartimide-modified lasso peptides from thermophilic Gram-positive bacteria. The lasso peptide cellulonodin-2 is encoded in the genome of actinobacterium Thermobifida cellulosilytica, while lihuanodin is encoded in the genome of firmicute Lihuaxuella thermophila. Additional genome mining revealed PIMT-containing lasso peptide BGCs in 48 organisms. In addition to heterologous expression, we have reconstituted PIMT-mediated aspartimide formation in vitro, showing that lasso peptide-associated PIMTs transfer methyl groups very rapidly as compared to canonical PIMTs. Furthermore, in stark contrast to other characterized lasso peptide PTMs, the methyltransferase functions only on lassoed substrates.


Assuntos
Ácido Aspártico/análogos & derivados , Bacillales/genética , Peptídeos/metabolismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Bacillales/metabolismo , Peptídeos/química , Peptídeos/genética , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/metabolismo , Processamento de Proteína Pós-Traducional , Thermobifida/genética , Thermobifida/metabolismo
6.
Sci Rep ; 11(1): 2821, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531560

RESUMO

Reproductive division of labor in insect societies is regulated through multiple concurrent mechanisms, primarily chemical and behavioral. Here, we examined if the Dufour's gland secretion in the primitively eusocial bumble bee Bombus impatiens signals information about caste, social condition, and reproductive status. We chemically analyzed Dufour's gland contents across castes, age groups, social and reproductive conditions, and examined worker behavioral and antennal responses to gland extracts. We found that workers and queens each possess caste-specific compounds in their Dufour's glands. Queens and gynes differed from workers based on the presence of diterpene compounds which were absent in workers, whereas four esters were exclusive to workers. These esters, as well as the total amounts of hydrocarbons in the gland, provided a separation between castes and also between fertile and sterile workers. Olfactometer bioassays demonstrated attraction of workers to Dufour's gland extracts that did not represent a reproductive conflict, while electroantennogram recordings showed higher overall antennal sensitivity in queenless workers. Our results demonstrate that compounds in the Dufour's gland act as caste- and physiology-specific signals and are used by workers to discriminate between workers of different social and reproductive status.


Assuntos
Abelhas/fisiologia , Comportamento Animal/fisiologia , Reprodução/fisiologia , Comportamento Social , Animais , Antenas de Artrópodes/fisiologia , Bioensaio , Feminino , Hidrocarbonetos/análise , Hidrocarbonetos/metabolismo , Masculino , Olfatometria , Feromônios/análise , Feromônios/metabolismo , Olfato/fisiologia
7.
J Exp Biol ; 223(Pt 3)2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31953359

RESUMO

The mechanisms that maintain reproductive division of labor in social insects are still incompletely understood. Most studies focus on the relationship between adults, overlooking another important stakeholder - the juveniles. Recent studies show that not only the queen but also the brood regulate worker reproduction. However, how the two coordinate to maintain reproductive monopoly remained unexplored. Here, we disentangled the roles of the brood and the queen in primitively eusocial bees (Bombus impatiens) by examining their separated and combined effects on worker behavioral, physiological and brain gene expression. We found that young larvae produce a releaser effect on workers, decreasing oviposition and aggression, while the queen produces both releaser and primer effects, modifying worker behavior and reproductive physiology. The expression of reproduction- and aggression-related genes was altered in the presence of both queen and brood but was stronger or the same in the presence of the queen. We identified two types of interactions between the queen and the brood in regulating worker reproduction: (1) synergistic interactions regulating worker physiology, where the combined effect of the queen and the brood on worker physiology was greater than their separate effects; (2) additive interactions, where the combined effect of the queen and the brood on worker behavior was similar to the sum of their separate effects. Our results suggest that the queen and the brood interact synergistically and additively to regulate worker behavior and reproduction, and this interaction exists at multiple regulatory levels.


Assuntos
Abelhas/fisiologia , Expressão Gênica/fisiologia , Animais , Abelhas/efeitos dos fármacos , Abelhas/genética , Comportamento Animal , Larva/efeitos dos fármacos , Larva/genética , Larva/fisiologia , Traços de História de Vida , Reprodução/genética , Comportamento Social
8.
Curr Opin Insect Sci ; 35: 69-76, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31404906

RESUMO

Pheromones mediating social behavior are critical components in the cohesion and function of the colony and are instrumental in the evolution of eusocial insect species. However, different aspects of colony function, such as reproductive division of labor and colony maintenance (e.g. foraging, brood care, and defense), pose different challenges for the optimal function of pheromones. While reproductive communication is shaped by forces of conflict and competition, colony maintenance calls for enhanced cooperation and self-organization. Mechanisms that ensure efficacy, adaptivity and evolutionary stability of signals such as structure-to-function suitability, honesty and context are important to all chemical signals but vary to different degrees between pheromones regulating reproductive division of labor and colony maintenance. In this review, we will discuss these differences along with the mechanisms that have evolved to ensure pheromone adaptivity in reproductive and non-reproductive context.


Assuntos
Himenópteros/fisiologia , Feromônios/farmacologia , Reprodução , Comportamento Social , Animais , Comportamento Animal/fisiologia , Feminino , Himenópteros/efeitos dos fármacos , Masculino
9.
Proc Biol Sci ; 282(1817): 20151800, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26490791

RESUMO

The regulation of reproductive division of labour is a key component in the evolution of social insects. Chemical signals are important mechanisms to regulate worker reproduction, either as queen-produced pheromones that coercively inhibit worker reproduction or as queen signals that honestly advertise her fecundity. A recent study suggested that a conserved class of hydrocarbons serve as queen pheromones across three independent origins of eusociality. In bumblebees (Bombus terrestris), pentacosane (C25) was suggested to serve as a queen pheromone. Here, we repeat these studies using a different species of bumblebee (Bombus impatiens) with a more controlled experimental design. Instead of dequeened colonies, we used same-aged, three-worker queenless groups comprising either experienced or naive workers (with/without adult exposure to queen pheromone). We quantified three hydrocarbons (C23, C25 and C27) on the cuticular surfaces of females and tested their effects on the two worker types. Our results indicate differences in responses of naive and experienced workers, genetic effects on worker reproduction, and general effects of hydrocarbons and duration of egg laying on ovary resorption rates. However, we found no evidence to support the theory that a conserved class of hydrocarbons serve as queen pheromones or queen signals in Bombus impatiens.


Assuntos
Abelhas/efeitos dos fármacos , Feromônios/farmacologia , Reprodução/efeitos dos fármacos , Animais , Feminino , Ovário/efeitos dos fármacos , Oviposição/efeitos dos fármacos , Feromônios/química
10.
J Insect Physiol ; 59(3): 311-7, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23232436

RESUMO

Queen mating status in social insects is a matter of crucial importance for workers because of its influence on the queen's productivity and consequently their fitness. Behavioural and physiological reactions of workers to the queens mating status have been studied as a proxy to mechanisms maintaining insect sociality. Here we show that unmated honeybee queens have considerably impaired capacity to trigger worker sterility and cooperative behaviour in comparison to mated (and thus more productive) queens and that under unmated queens social harmony in honeybee societies and queen's dominant position are somewhat compromised. Together with this it is shown that honeybee workers exposed to unmated queens despite being active reproductively and behaving accordingly display an impaired ability to advertise their fertility compared to queenless workers. These findings suggest that reproductive development, behavioural reactions and production of fertility signals are differentially regulated and differently influenced by the queen's presence.


Assuntos
Abelhas/fisiologia , Animais , Feminino , Fertilidade , Masculino , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...